Wo ist Attowelt?

Wo ist Attowelt?

Ein Urlaub in Atto-World dauert den Bruchteil einer Sekunde

Milli, Mikro, Nano, Piko, Femto, Atto. Was sich wie ein Countdown anhört sind die physikalischen Stufen hinunter ins Kleinste. Eine Attosekunde ist ein Tausendstel eines Tausendstels eines Tausendstel eines Tausendstel eines Tausendstel eines Tausendstel einer Sekunde: 10–18. Ein Lichtstrahl käme in dieser Zeit nicht einmal eine Bakterienlänge weit, und könnte die Küchenwaage ein Attogramm anzeigen, würde sie das Landen eines Virus anzeigen.

Wenn Sie in die Attowelt hinuntersteigen, sehen Sie alles riesig groß. Hundert Millionen Atome hätten nebeneinander in einem Attometer Platz. Einige Attosekunden werden benötigt, um in Atomen Energien umzulagern. Chemische Bindungen entstehen in dieser Geschwindigkeit. Alles geht so rasch vor sich, dass einer, der nach Atto-World reist, mit vielerlei technischen Tricks die Zeit auflösen muss, um dieses schnelle Leben dort zu sehen.

Was früher aussichtslos erschien, ist durch die Entwicklung von Elektronik, Optik, Computer und Feinmechanik heute machbar: Attowissenschaftler messen Kräfte im Attonewtonbereich, die nicht ausreichen, um ein Molekül zu heben. Sie entwickeln Reagenzgläser, die einige Attoliter fassen.

Ein normales Blitzlicht dauerte eine Ewigkeit, im Vergleich zu den ultrakurzen Lichtblitzen von 650 Attosekunden Dauer, die Ferenc Krausz 1997 an der Technischen Universität Wien hergestellt hat. Der Blitz war kurz, doch vier Jahre dauerte es, zu beweisen, dass es wirklich passierte. Krausz musste mit seinem Team erst eine Attosekunden-Stoppuhr entwicklen. Heute ist Ferenc Krausz Direktor eines eigenen Forschungsinstitutes, dem Max-Planck-Institut für Quantenoptik in Garching. Die Ergebnisse seiner ultrakurzen Lichtblitze haben sich zu einem eigenen Forschungsgebiet ausgeweitet: „Electrons in Motion“. Laserstrahlen werden verwendet, um die Bewegungen einzelne Elektronen zu steuern und sie dabei zu beobachten.

Anwendungen ergeben sich parallel zum Forschungsfortschritt: Die Chemiker sind interessiert, sie würden die Knüpfung chemischer Bindungen besser verstehen. Die Nanotechnologie ist interessiert, weil sie gezielt in großen Molekülen Umgruppierungen vornehmen will. Viele Krankheiten könnten schneller diagnostiziert werden, da Viren Antikörper aufnehmen, und dabei etwas schwerer werden. Ein Traum wäre, Röntgenstrahlen zu erzeugen, die lernen, ihre Empfindlichkeit auf das zu untersuchende Material abzustimmen, und das übrige Gewebe zu schonen.

Wem aber nun selbst die Attowelt zu groß ist, könnte in Zukunft noch tiefer ins Kleine zoomen. Der nächste Schritt ist die Reise in die Zeptowelt. Nukleare Reaktionen finden in 1o–21 Sekunden statt. Nicht zu vergessen: die Yoktowelt: 1o–24. Ein Proton wiegt ungefährt 1,7 Yoktogramm, und das mächtige Top-Quark, ein Elementarteilchen, lebt und stirbt in nur 0,4 Yoktosekunden. Und wie gehtʼs weiter?

Quelle: Lothar Bodingbauer, Wissen auf unsere großen Fragen. Styria 2007 

Die erste Mondlandung

Die erste Mondlandung

Lesen und recherchieren:

  1. Lesen Sie den Zeitungsbericht der Neuen Zürcher Zeitung vom 26. Juli 1968, und verschaffen Sie sich einen Überblick über den Vorgang der Mondlandung.
  2. Lesen Sie den Wikipedia Artikel zur Mondlandefähre.
  3. Lesen Sie den Erfahrungsbericht des Kommandanten der Mondlandung.
  4. Lesen Sie den Wikipedia Artikel Apollo 11.
  5. Versuchen Sie im Internet den existierenden Verschwörungstheorien auf die Spur zu kommen.

Sehen:

Die Astronauten Armstrong und Aldrin erreichen den Mond im Lunar Module “Eagle” (der Adler). Trotz Mondstaub und Alarmmeldungen setzt der Adler sicher auf der Mondoberfläche auf: “The eagle has landed”. Link: http://youtu.be/Zd2D3MKX3YE

Schreiben:

Sie werden gebeten, für ein Kindermagazin einen Bericht zu schreiben, der das Thema „1. Mondlandung“ behandelt. Schreiben Sie so spannend und informativ wie möglich. Länge: 1000 Anschläge.

Beobachten:

Wo ist der Mond? Versuchen Sie ihn eine Woche lang jeden Tag einmal zu finden. Zeichnen Sie auf, wie er aussieht, und wie er morgen aussehen wird. Schreiben Sie auf, wo er ist, und wo er morgen sein wird.

 

Wie ist das Universum entstanden?

Wie ist das Universum entstanden?

Beitragsfoto by Greg Rakozy on Unsplash
Wer den Himmel beobachtet, sieht die nahe Umgebung des Weltalls. Das Universum. Was denken die Menschen, wie ist es entstanden? Und wer von ihnen hat recht?
Gute Frage!

https://www.youtube.com/watch?v=EccE5NpEcUo
Hören Sie mal…
Viele Kulturen haben ihren eigenen Schöpfungsmythos. Die Geschichten haben oft mit Göttern und der Natur zu tun. Naturwissenschaftler haben ihre eigene Geschichte der Entstehung des Universums. Es entstand vor 13,8 Milliarden im Urknall. Raum und Zeit entstand. Es gibt bei der Beobachtung des Weltalls Hinweise darauf: das Hintergrundrauschen als eine Art “Echo des Urknalls”, und die Rotverschiebung der Sterne und Galaxien – alles dehnt sich aus – und damit muss auch alles einen Anfang gehabt haben.
Simulationen am Computer zeigen, dass die Idee mit dem Urknall eine gute Idee ist. Ein schönes Modell. Es funktioniert allerdings erst dann, wenn man zur beobachtbaren Materie noch “dunkle Materie” und zur beobachtbaren Energie noch “dunkle Energie” hinzufügt. Was auch immer es ist, das muss es geben, damit am 13,8 Milliarden Jahre nach dem Urknall das zeigt, was wir heute im Universium beobachten. Mit Teleskopen, mit Antennen, und mit Satelliten.

Definitionen

Hier erfahren wir die Definitionen der verwendeten Konzepte.
Die Schöpfungsmythen vieler Kulturen spiegeln die Art, Geschichten zu erzählen wieder, die es damals gab, als sie entstanden sind.

 

Die schwarz geflügelte Nacht, eine Göttin, vor der selbst Zeus in Ehrfurcht stand, wurde vom Wind umworben
und legte ein silbernes Ei in den Schoß der Dunkelheit; Eros, den manche Phanes nennen, entschlüpfte diesem Ei und setzte das All in Bewegung. Die Göttin selbst zeigte sich in der Dreiheit von Nacht, Ordnung und Gerechtigkeit.
Griechische Mythologie

Dunkel und unsichtbar war die erste Welt am Anfang allen Seins, so dunkel wie die Wolle schwarzer Schafe. Diese Welt der dunklen Erde war klein, eine winzige Insel auf dem unendlichen Weltennebel. Vier Himmelsrichtungen gab es, und über jeder lag eine Wolke. In der Mitte aber wuchs die Weltenkiefer, von der alle Kiefern ihren Anfang genommen haben. Die vier Wolken enthielten das Wesen dieser ersten Welt, die gestaltlos war, und jede Wolke hatte eine bestimmte Farbe.
Erzählungen der Navaho-Indianer

Izanagi und Izanami standen auf der schwebenden Brücke des Himmels und beratschlagten und sprachen: ,Ist unten am Boden nicht etwa gar ein Land?’ Hierauf stießen sie mit dem himmlischen Juwelenspeer nach unten und rührten damit im blauen Meer herum. Als sie die Salzflut gerührt hatten, bis sie sich zäh verdickte, und sie den Speer wieder heraufzogen, häufte sich das vom Ende des Speeres herabtropfende Salz des Wassers an und wurde eine Insel, die den Namen bekam Ono-goro-zima: “Von selbst verdichtet und geronnen.”
Japanische Überlieferung

Es gibt eine Sage von einem Feigenbaum, dem riesigen Acvatha, dem immer lebenden, der wurzelt im Himmel, die Zweige abwärts gerichtet … Seine wahre Gestalt, sein Ursprung, sein Ende, sein wirkliches Wesen, kann keiner auf Erden erfahren.
Indische Überlieferung

Sie selbst

Hier nähern wir uns selbst der Sache an.
Auch die Wissenschaftler haben ihre “Geschichte” entwickelt. Sie ist über die letzten 100 Jahre entstanden. Die Sendung “Das dunkle Schwarze”, die im Deutschlandfunk ausgestrahlt wurde, stellt diese Entwicklung dar:

1900: Das Universum ist ein fester, unbeweglicher Raum, starr wie ein Tierkäfig, aber unvorstellbar groß. Darin bewegen sich die Sterne. Die Astronomen wissen, dass es Sterneninseln, also Galaxien, gibt. Sie sind sich aber noch uneins darüber, ob diese Sterneninseln innerhalb unserer Milchstraße liegen oder ob sie noch viel weiter entfernt sind.

1930: Es gibt Galaxien weit außerhalb der Milchstraße. Die Milchstraße steht nicht mehr im Zentrum, sie ist nur eine von vielen Galaxien, und diese Galaxien entfernen sich alle voneinander, wie Rosinen in einem aufgehenden Hefeteig. Der Weltraum hat keine starre, ewige Struktur mehr, sondern er hat eine dynamische Geometrie. Er bläht sich auf.

1980: Der Kosmos hat einen Anfang – den Urknall. Er expandiert zu Beginn explosionsartig, und wurde nach einigen hundert tausend Jahren durchsichtig. Die Dunkle Materie bildete die ersten filamentartigen Strukturen und großen Klumpen. Sie zog die gewöhnliche Materie an und verdichtete sie zu Sternen, Galaxien und Galaxienhaufen. Die Konstante Lambda, also die Dunkle Energie, taucht in den Gleichungen der Kosmologen zur Relativitätstheorie kaum noch auf. Sie ist aus der Mode gekommen.

2003: Die Astronomen haben sich in ungewohnter Eintracht auf das so genannte Konkordanz-Modell geeinigt: Das Weltall ist 13,7 Milliarden Jahre alt. Es besteht zu 70 Prozent aus der Dunklen Energie, die Expansion des Kosmos vorantreibt, zu 25 Prozent aus einer noch unbekannten Dunklen Materie und zu 5 Prozent aus gewöhnlicher, sichtbarer Materie.

Text: Lothar Bodingbauer, Hintergrundsendung vom 13.04.2004: “Das Dunkle Schwarze”, Deutschlandfunk. Foto Universum: Greg Rakozy, Unsplash
Wikpedia Stichworte
Die Inhalte dieser Website haben teilweise noch echte Fehler. Sie entstehen in verschiedenen Schulprojekten und werden von Menschen unterschiedlichen Wissensstands parallel erarbeitet. Bitte um besondere Vorsicht, wenn du die Inhalte ungeprüft verwenden möchtest. Solltest du einen Fehler finden, danken wir für ein Mail an fehler@phyx.at
Immer noch interessiert?

Fragen?

Kennen Sie sich noch nicht ganz aus? Gibt es einen Fehler? Schicken Sie eine E-Mail. Wir sammeln Ihre Fragen und helfen gerne weiter.
Was ist Energie?

Was ist Energie?

Die Energie ist gespeicherte Arbeit. Das ist die Kurfassung. Eine physikalische Größe, die in allen Teilgebieten der Physik sowie in der Technik, der Chemie, der Biologie und der Wirtschaft eine zentrale Rolle spielt. Ihre SI-Einheit ist das Joule. In der theoretischen Physik wird Energie abstrakt als diejenige Größe definiert, die aufgrund der Unveränderlichkeit der Naturgesetze im Lauf der Zeit erhalten bleibt. Viele einführende Texte definieren Energie als Fähigkeit, mechanische Arbeit zu verrichten.

(mehr …)

Warum siedet Wasser am Mount Everest schneller als bei uns?

Warum siedet Wasser am Mount Everest schneller als bei uns?

Wasser verdunstet bei jeder Temperatur, auf jeder Höhe. Es entsteht Wasserdampf. Ab einer bestimmten Temperatur, auf einer bestimmten Höhe ist der Luftdruck der Umgebung gleich dem Luftdruck in den Dampfbläschen in der Flüssigkeit. Es blubbert. Man sagt, das Wasser siedet. Je geringer der Luftdruck ist, desto niedriger ist die Siedetemperatur. Auf der Spitze des Mt. Everest ist der Luftdruck so gering, dass das Wasser bereits bei 70 Grad Celsius siedet.

(mehr …)

Warum macht Reibung warm?

Warum macht Reibung warm?

Wenn dem nicht so wäre, dann hätte sich die Welt wohl ganz und gar anders entwickelt. Die Möglichkeit mit einem gedrehten Holzstab und Zunder selbstständig Feuer zu machen war einer der Schlüsselpunkte in der menschlichen Entwicklung. Reibung macht warm, weil Arbeit in Wärmeenergie umgewandelt wird. Das sagt der zweite Hauptsatz der Wärmelehre: “Die innere Energie eines Körpers kann nur durch Zufuhr von Arbeit und durch Zufuhr von Wärme erhöht werden.”

(mehr …)

Wie kühlt der Kühlschrank?

Der Kühlschrank transportiert Wärme aus sich heraus in die Küche. Er ist eine Maschine, die Wärme von einem kalten Reservoir (Kühlraum) in ein warmes Reservoir (Küche) fließen lässt. Der zweite Hauptsatz der Wärmelehre würde den umgekehrten Weg vorschreiben: von heiß nach kalt – von Küche nach Kühlschrank.

(mehr …)