Informationen im Flugzeug
Im Flugzeug. Informationen am Bildschirm vor uns.
Welche Fragen können wir stellen – und was sind die Antworten?
Im Flugzeug. Informationen am Bildschirm vor uns.
Welche Fragen können wir stellen – und was sind die Antworten?
Der Franz hat geschrieben. Er schreibt über das Tageslicht, das nach dem Winter wieder länger wird. Frage: Welche Funktion beschreibt am besten den Verlauf der Länge eines Tages? Welche nicht. Und welche einige Tage lang zumindest? Wählen Sie zwischen Exponentialfunktion, linearer Funktion, Winkelfunktionen, Logarithmusfunktion, Polynomfunktion und Wurzelfunktion. Zeichnen Sie die typischen Graphen dieser Funktionen und überlegen Sie sich, welche Vorgänge in der Natur sich mit diesen Funktionen modellieren lassen. Schlagen Sie die Begriffe Weihnachten, Dreikönig und Lichtmess nach. Was bedeuten sie? Was bedeuten sie hier bei diesem Beispiel? Was bedeuten sie, wenn Sie die Länge des Tageslichts in Abhängigkeit von der Zeit als Graph skizzieren? Was bedeuten Flohsprung, Hahnensprung und Katzensprung – grundsätzlich, und hier bei diesem Beispiel, wo sehen Sie das im Graphen?
Download: Diese Frage als Moodle-XML Frage für einen Moodle-Kurs
Warum die Sonne heiß ist, können wir auf zwei Ebene betrachten. Einmal ist da die konkrete Energieumwandlung durch Kernfusion. Wasserstoff wird zu Helium fusioniert (verschmolzen). Die entstehenden Atome haben etwas weniger Maße als die ursprünglichen Atome, und diese Masse wird nach Albert Einsteins Formel E=mc^2 in Energie umgewandelt.
Die zweite Ebene ist aber fast noch spannender: man kann das Ganze auch durch Energieerhaltung beschreiben. Die Sonne ist aus einer Wolke entstanden, die sich zusammengezogen hat, aufgrund ihrer Schwerkraft. Masse, die „hoch“ ist, hat viel potenzielle Energie. Wenn die Atome in einer Wolke weit voneinander entfernt sind, könnte man sie auch als „hoch“ bezeichnen. Sie haben viel potenzielle Energie. Wenn sich die Wolke zusammenzieht, muss diese Energie irgendwie irgendwo hin: Die Temperatur der Sonne erhöht sich.
Was braucht es für einen Regenbogen?
Regen. Und die Sonne. Wir überprüfen das: gib den Regen weg – kein Regenbogen. Gib die Sonne weg, und lass den Regen – kein Regenbogen. Es braucht also Sonne und Regen.
Genau genommen die Sonnenstrahlen und die Regentropfen. Die Sonnenstrahlen bestehen aus vielen verschiedenen Farben. Die Regentropfen machen diese Farben sichtbar. Wenn alle Farben durch den Regentropfen scheinen, werden sie von ihrem geradlinigen Weg abgelenkt. Sie werden gebogen. Man sagt auch “gebrochen”. Das funktioniert bei blauem Licht besser als bei rotem Licht, und gelb und grün, na ja, so in der Mitte. Was also aus dem Regentropfen herauskommt ist das aufgefächerte Licht. Ein Zuschauer in der Nähe – Du – kannst es sehen. Und zwar nur jenes Licht, jener Regentropfen, die in einem bestimmten Winkel zur Sonne stehen. Und alle diese Tropfen unter diesem Winkel befinden sich auf einem Bogen. Voila. So entsteht ein Regenbogen.
Regenbogenfarben aber, die gibt es auch ohne Bogen:
Photo by Greg Nunes on Unsplash
Schatten, Halbschatten, Kernschatten. Wie viele Lampen machen dieses Bild? Und können Sie es erklären? Am besten ist, Sie argumentieren mit Zeichnung oder mit einem Experiment, das die Situation nachstellt.
Unordnung wird physikalisch mit Entropie bezeichnet. Es ist ein Trend in der Natur, dass die Entropie in einem System immer größer wird. Das erleben wir auch daheim: alle Dinge in unserem Zimmer werden sich gleichmäßig “unordentlich” verteilen. Ein zweiter Trend der Natur ist ihr Wunsch nach geringster Energie: die Unordnung wird am Fußboden entstehen.
Achtung: Entropie als Unordnung zu bezeichnen, ist stark vereinfacht. Besser wäre vielleicht “maximale Verteilung”. Beim Studium von Chemie und Physik lernen Sie genauere Definitionen im Bereich der Thermodynamik kennen. Wir werden hier trotzdem mit der “Unordnung” arbeiten, und vielleicht besser mit Entropie als “Informationsverlust”.
Eine automatische Schiebetüre ist üblicherweise geschlossen. Sie beginnt sich zu öffnen, wenn sie eine Bewegung bemerkt. Damit nicht jeder Passant auf der anderen Straßenseite die Tür öffnet, sind ihre Sensoren auf eine bestimmte Entfernung eingestellt. Wenn jemand diese Entfernung unterschreitet, wird das Signal zum Öffnen gegeben. Dieses Öffnen dauert ein wenig. Somit haben wir zwei Geschwindigkeiten, die das Geschehen bestimmen. Wie schnell geht jemand vom Auslösepunkt zur Tür. Wie schnell ändert sie ihre Öffnung von Geschlossen zu “breit genuger Spalt zum Durchgehen”.
Am besten wir probieren das mit konkreten Zahlenwerten aus, die wir einfach einmal annehmen, wie wir sie vermuten.
1. Die automatische Türe braucht eine Sekunde, um zu öffnen.
2. Der Auslösepunkt ist einen Meter vor der Türe.
Wir wissen: Geschwindigkeit=Weg/Zeit. Wir haben 1 Sekunde Zeit, um den einen Meter zur Tür zurückzulegen. Mit einer Geschwindigkeit von 1 m/1s geht sich das aus. Da sind umgerechnet 3,6 km/h (Umrechnung m/s auf km/h dich Nachdenken oder Faustregel “*3,6”) Das ist Gehgeschwindigkeit. Langsamer geht auch. Aber sicher nicht schneller. Wer schneller geht, stößt gegen die geschlossene Tür.
Frage: Wie weit muss denn der Auslösepunkt der Tür gewählt werden, damit man auf sie zulaufen kann?
Machen Sie eine Annahme für seine Geschwindigkeit und bestimmen Sie den Weg, der zur Verfügung stehen muss, um ihn in einer Sekunde zurückzulegen. Dazu formen Sie die Geschwindigkeitsformel Geschwindigkeit=Weg/Zeit auf Weg=… um.
Fortgeschritten: Analysieren Sie verschiedene Türen, die Sie suchen. Oder die Sie im Video finden. Das wäre auch ein Forschungsgegenstand für eine vorwissenschaftliche Arbeit.
Licht entsteht in Lichtquellen. Genau genommen im Atom. Genaugenommen in der Hülle des Atoms. In der Elektronenhülle befindet sich ein Elektron im angeregten Zustand. Es fällt in den Grundzustand zurück. Die Energiedifferenz wird als “Lichtquant” ausgestrahlt, es gilt der Zusammenhang: E= hf, und das bedeutet: Energiedifferenz (E) = Plancksches Wirkungsquantum (h) • Frequenz des Lichtes (f)
Licht verschwindet zum Beispiel in einer schwarzen Katze. Ein Lichtstrahl trifft auf ihr Fell. Auf ein Atom ihres Fells, genau genommen: es trifft auf ein Elektron in der Hülle des Atoms. Dieses Elektron geht in einen angeregten Zustand. Das “Lichtquent” wurde absorbiert, Licht ist verschwunden, die Katze hat die Energie aufgenommen und ist wieder ein bisschen wärmer geworden. Wieder gilt der Zusammenhang: E= hf. Die aufgenommene Energie ist zur Frequenz des Lichtes proportional. je größer die Frequenz, desto größer die Energie.
Hat das auch für mein Leben Bedeutung?
Durchaus. Je höher die Frequenz des Lichtes ist, desto energiereicher ist es. Sonnenbrand durch UV-Licht (Ultraviolett). Die Frequenz des UV-Lichtes ist so hoch, dass die Energie ausreicht, um ein Elektron aus seiner Hülle herauszuschlagen. Das Atom wird dadurch ionisiert. Wenn sich dieses Atom im Erbgut eines Lebewesens befindet, kann es dadurch verändert werden. Hautkrebs kann ausgelöst werden.
Und was ist Licht eigentlich?
Licht ist eine elektromagnetische Welle, so wie Radiowellen, nur mit einer höheren Frequenz. Die Netzhaut in unseren Augen ist für diese Frequenzen empfindlich. In der Quantenphysik spricht man auch davon, dass Licht aus einem Strom von Teilchen besteht, den “Photonen”. Es sind sogenannte – unteilbare – Energiequanten, die die Energieportionen E=hf tragen. Man spricht insgesamt vom “Welle-Teilchen-Dualismus” von Licht. Manche Experiment kann man gut erklären, wenn man annimmt, dass Licht eine Welle ist (Interferenzen), manche kann man gut erklären, wenn man annimmt, dass Licht aus Teilchen besteht (Photoelektrischer Effekt).
Immer noch interessiert?
Eine Episode der Physikalische Soiree beschäftigt sich mit dem Licht, seinen Eigenschaften, und wie man das Licht kennenlernen kann. Link zum Gespräch.
Wissenschaft ist in der Lage Glauben von Wissen zu trennen. Es ist dabei gar nicht die Frage, was besser ist, denn beides hat seine Berechtigung. Wichtig ist, dass man weiß, wo die Grenze ist. Der Philosoph René Descartes hat im 17. Jahrhundert diese Grenze formuliert.
Vier Kriterien, macht die Wissenschaft zur “Marke”, so wie Bio-Essen und geprüfte Betriebsabläufe die Ja natürlich von Billa definieren, oder das Selbstzusammenschrauben die Marke Do-it-yourself.
Mit seinem berühmten Gedankenexperiment „Schrödingers Katze“ wollte Erwin Schrödinger keine Katze quälen, sondern zeigen, wie sehr sich die Gesetze der Quantenwelt von unseren unterscheiden. Dazu gibt er eine Katze – in Gedanken – in eine Kiste. Sie ist gleichzeitig lebendig und tot. Wie kann das sein? (mehr …)
Der Wiener Hochstrahlbrunnen macht an Blauer-Himmel-Tagen die Besucher nass, wenn der Wind eine feine Gischt durch die Gegend weht. Diese Gischt macht in Zusammenarbeit mit der Sonne einen schönen Regenbogen. Warum?
Bei Vollmond ist die Rundheit des Mondes in allen fehlenden Details sichtbar: was fehlt, sind Ecken und Kanten. Er ist rund. Nicht nur der Mond, sondern alle anderen “vernünftigen” Himmelskörpern. Warum das so ist, könnte jeder beantworten, der schon einmal eine Kugel aus Knetwachs geformt hat.
Die meisten Tiere mit Fell schütteln sich einmal kräftig durch, nachdem sie eine Runde geschwommen sind. Das ist keine nette Angewohnheit sondern eine Frage des Überlebens. Warum müssen sich Hunde schütteln, nachdem sie nass geworden sind?
Jeder kennt die Situation: Man hat keine Zeit zu kochen, also die Spagetti-Reste vom Vortag schnell in die Mikrowelle geschoben und schon kann’s ans Essen gehen. Aber kann es sein, das das Essen aus der Mikrowelle rascher abkühlt, als herkömmlich erwärmtes Essen?
1900: Das Universum ist ein fester, unbeweglicher Raum, starr wie ein Tierkäfig, aber unvorstellbar groß. Darin bewegen sich die Sterne. Die Astronomen wissen, dass es Sterneninseln, also Galaxien, gibt. Sie sind sich aber noch uneins darüber, ob diese Sterneninseln innerhalb unserer Milchstraße liegen oder ob sie noch viel weiter entfernt sind.
1930: Es gibt Galaxien weit außerhalb der Milchstraße. Die Milchstraße steht nicht mehr im Zentrum, sie ist nur eine von vielen Galaxien, und diese Galaxien entfernen sich alle voneinander, wie Rosinen in einem aufgehenden Hefeteig. Der Weltraum hat keine starre, ewige Struktur mehr, sondern er hat eine dynamische Geometrie. Er bläht sich auf.
1980: Der Kosmos hat einen Anfang – den Urknall. Er expandiert zu Beginn explosionsartig, und wurde nach einigen hundert tausend Jahren durchsichtig. Die Dunkle Materie bildete die ersten filamentartigen Strukturen und großen Klumpen. Sie zog die gewöhnliche Materie an und verdichtete sie zu Sternen, Galaxien und Galaxienhaufen. Die Konstante Lambda, also die Dunkle Energie, taucht in den Gleichungen der Kosmologen zur Relativitätstheorie kaum noch auf. Sie ist aus der Mode gekommen.
2003: Die Astronomen haben sich in ungewohnter Eintracht auf das so genannte Konkordanz-Modell geeinigt: Das Weltall ist 13,7 Milliarden Jahre alt. Es besteht zu 70 Prozent aus der Dunklen Energie, die Expansion des Kosmos vorantreibt, zu 25 Prozent aus einer noch unbekannten Dunklen Materie und zu 5 Prozent aus gewöhnlicher, sichtbarer Materie.