Mathe nach Zahlen: 🌵 Kaktus

Mathe nach Zahlen: 🌵 Kaktus

Klick mal auf die drei Pluspunkte

Dieser Kaktus hat ein paar Zahlen versteckt

Verwende beide Fotos, um die Fragen zu beantworten.

Ein Kaktus. Mehrere Kakteen.

Kein Kaktus ist so dicht mit Stacheln besetzt, daß er nicht noch Platz für eine Blüte hätte. — Sprichwort

Kakteen sind Pflanzen, die in trockenen Gegenden leben. Kakteen können viel Wasser speichern. Warum?

Das ist ein Mittelding zwischen Kaktus und normaler Pflanze. Er hat auch einen Namen: Sukkulent. Er hat richtig dicke Blätter.

Symmetrie

4 rechte Winkel zu je 90 Grad. Warum? Einmal rundherum sind 360 Grad. Und 360 : 4 = 90
Wie groß ist der Winkel zwischen zwei Rippen? Um diesen Winkel kannst du den Kaktus drehen, und er sieht wieder gleich aus.

Vielleicht hast du bemerkt dass nicht nur 40° die Lösung ist sondern auch 80°, 120°, 160°, und so weiter. Du kannst den Kaktus auch um Vielfache von 40° drehen, und er sieht wieder gleich aus. Wir sprechen von Rotations-Symmetrie.

360 : ____ = 45

Von der Wirklichkeit zum Modell

Die Stacheln des Kaktus sind im Weg, wenn wir uns mit dem Kaktus mathematisch beschäftigen wollen. Da ist es besser ein Modell zu bilden. Ein Modell ist ein vereinfachtes Abbild der Wirklichkeit. Doch welches Modell ist das richtige für einen Kaktus?

Messen

Wir messen den Durchmesser und berechnen den Radius
Kennst du den Radius, kannst du Oberfläche und Volumen berechnen.

Berechnen

Wir werden nun die Oberfläche berechnen. Und das Volumen.

Was bedeutet das Ergebnis? Ist das viel oder wenig? Wir vergleichen.

Kaktus: Oberfläche=615 cm2 und Volumen=1436cm3
Sieht gar nicht so groß aus.
Wie kam das Wasser auf die Erde?

Wie kam das Wasser auf die Erde?

Der Wiener Astronom Rudolf Dvorak spricht über die mögliche Herkunft der wichtigsten Grundlage des Lebens. Er forscht an der Universitätssternwarte Wien.

Wolken im Weltall

Diese Radiobeiträge wurden im ORF Radioprogramm Österreich 1 im Dezember 2018 erstmals ausgestrahlt. Die Sendereihe heißt: “Vom Leben der Natur”. Man kann sie auch als Podcast abonnieren.


 Materialien zur 1. Folge

Transkript

Photo by Imleedh Ali on Unsplash

Was ist der Unterschied zwischen Komet und Asteroid?

Was ist der Unterschied zwischen Komet und Asteroid?

Das Foto zeigt 67P/Churyumov–Gerasimenko.

Download als mp3 Audio

Klick zum Manuskript (PDF)

Kometen sind ursprüngliche Produkte bei der Entstehung des Sonnensystems, die weit draußen sind. Wir haben eine Kometenwolke in 10.000 Mal der Entfernung von Sonne zu unserer Erde und immer wieder wird aus dieser Kometenwolke, die sehr weit hinausgeht und vielleicht sogar oder sicher mit anderen Planetensystemen nicht in direktem Kontakt ist sondern austauscht tatsächlich die Kometen. Dass von dort die Kometen immer wieder herein gestreut werden durch vorbeigehenden Sterne und wir haben ja tatsächlich haben wir Beobachtungen von Kometen. Vor kurzem war wieder der Halley’sche Komet da und es gibt immer wieder, der Hale-Bop, und es gibt immer wieder diese fantastischen Erscheinungen. Und diese Kometen sind aus dem ursprünglichen Sonnen-Nebel entstanden, während die Asteroiden genauso entstanden sind wie unsere Planeten, mit einem festen Material und mit Wasser.

 


 

Quelle: Rudolf Dvorak im Gespräch mit Lothar Bodingbauer, Foto: ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0, CC BY-SA 3.0-igo, https://commons.wikimedia.org/w/index.php?curid=36603034

 

 

Mountainbike mit Strom

Mountainbike mit Strom

Es gibt drei grundsätzliche Energieformen, die beim Radfahren ins Spiel kommen. Besonders beim Bergauffahren.

1) Potenzielle Energie. Du und dein Rad habt eine Masse, die am Berg oben mehr potenzielle Energie hat. Aufgrund der Höhendifferenz.

2) Kinetische Energie. Du und dein Rad habt eine Masse und eine Geschwindigkeit, die ihr erreichen wollt, damit ihr vorwärts kommt. Das Fahrrad muss beschleunigt werden. Die Energie aufgrund der Geschwindigkeit heißt kinetische Energie.

3) Reibung. Reifen auf Boden. Kette auf Zahnrad. All das geht nicht reibungslos, hier verschwindet Energie, die sich letztlich in einer Temperaturerhöhung bemerkbar macht. Reibungsenergie muss zugeführt werden, damit nicht alles stehenbleibt.

Jede der drei Energieformen muss irgendwo herkommen. Beim normalen Fahrrad ist das dein Körper. Deine Muskeln. Deine Nahrung. Und es ist gar nicht wenig, was man da braucht. Auf eine bestimmte Zeiteinheit gerechnet (in einer Sekunde, in einer Minute, in einer Stunde) sprechen wir auch von Leistung. Gleiche Energie in geringer Zeit eingesetzt – höhere Leistung.

Beim Elektrorad haben wir die Energie im Akku. Was für eine Erleichterung. Wir müssen nur ein wenig mittreten. Die Energie im Akku “macht das Fahrrad hoch”. Sie macht das Fahrrad schnell. Sie hält das Fahrrad schnell.

Rotation

Rotation

Neben der geradlinigen Bewegung – ohne Kräfte – gibt es auch noch die Bewegung in Kurven. Es sind Kräfte notwendig, damit das geht. Eine dritte Art der Bewegung ist besonders regelmäßig: die Kreisbewegung, die Rotation. Es braucht eine gleichbleibende Kraft, die den Gegenstand immer in Richtung Mitte zieht, das Resultat ist die Bewegung auf einer Kreisbahn. Es kann natürlich auch sein, dass sich ein Gegenstand als Gesamtes dreht. Da ist dann jedes Teilchen auf einer Kreisbahn. Das Ganze wird Rotation genannt.

Wissenschaftler haben die schnellste Rotation erzeugt, die sie bisher kannten. Dazu gibt es einen Artikel der ETH Zürich vom 24.07.2018.


Photo by Teddy Kelley on Unsplash

Wolken im Weltall

Wolken im Weltall

Der Astrophysiker Gerhard Hensler von der Universitätssternwarte in Wien erzählt in 5 Teilen über Galaxien, Sterne und Molekülwolken im Universum.

Wolken im Weltall

Diese Radiobeiträge wurden im ORF Radioprogramm Österreich 1 im Dezember 2015 erstmals ausgestrahlt. Die Sendereihe heißt: “Vom Leben der Natur”. Man kann sie auch als Podcast abonnieren. Lehrer:innen finden Unterrichtsmaterialien dazu hier bei oe1macht.schule


Image credit: NASA/JPL-Caltech/STScI

Blumezwiebeln Pflanzen

Blumezwiebeln Pflanzen

Wer im Herbst Blumenzwiebeln pflanzt, kann sich im Frühjahr über frühe Blüten freuen. Für Schulen ist das eine gute Möglichkeit, Erlebnisse zu schaffen, die schon im Herbst beim Löchergraben beginnt. Erfahrungen, Wörter und Ideen finden Sie hier: Slow Science 001

Was bedeutet kritisch denken?

Was bedeutet kritisch denken?

Was bedeutet “kritisch denken”? Ideen dazu sind herzlich willkommen.

Um zu verstehen, was “kritisch denken” bedeutet, fragen wir uns zunächst die wichtigste Frage, was wir davon haben.

Welchen Vorteil habe ich, wenn ich kritisch denke?

… und wir erkennen, dass wir noch nicht viel beantworten können. Aber wir können die Frage erweitern:

Welchen Vorteil haben andere, wenn ich kritisch denke?
Welchen Nachteil habe ich, wenn ich kritisch denke?
Welchen Nachteil haben andere, wenn ich kritisch denke?

Welchen Vorteil habe ich, wenn ich unkritisch denke?
Welchen Vorteil haben andere, wenn ich unkritisch denke?
Welchen Nachteil habe ich, wenn ich unkritisch denke?
Welchen Nachteil haben andere, wenn ich unkritisch denke?

Welchen Vorteil habe ich, wenn andere kritisch denken?
Welchen Vorteil haben andere, wenn sie kritisch denken?
Welchen Nachteil habe ich, wenn andere kritisch denken?
Welchen Nachteil haben andere, wenn sie kritisch denken?

Welchen Vorteil habe ich, wenn andere unkritisch denken?
Welchen Vorteil haben andere, wenn sie unkritisch denken?
Welchen Nachteil habe ich, wenn andere unkritisch denken?
Welchen Nachteil haben andere, wenn sie unkritisch denken?

Ohne die Antworten zu kennen, haben wir jetzt den ersten Punkt gefunden.

Kritisches Denken untersucht Fragen.

Kann ich das fragen, kann ich das anders fragen, habe ich alles gefragt, wer hat Interesse, etwas zu fragen, wer hat Interesse etwas nicht zu fragen.

Jetzt wollen wir doch einige Fragen beantworten. Anhand eines Beispiels:

Sie möchten bei einem Imker Honig kaufen. Er sagt, ich habe Bio-Honig, feinste Qualität. Er ist daher etwas teurer. Dafür ist der Honig „garantiert“ rückstandsfrei, es sind keine Chemikalien drin. (Leider soll das in diesem Beispiel eine Behauptung sein, die nicht stimmt, der Honig ist kein Biohonig. Er ist keine feinste Qualität, und er ist nicht rückstandsfrei.)

Bitte beantworten Sie die folgenden Fragen zu diesem Honigbeispiel:

Welchen Vorteil habe ich, wenn ich kritisch denke?
Welchen Vorteil haben Verkäufer, wenn ich kritisch denke?
Welchen Nachteil habe ich, wenn ich kritisch denke?
Welchen Nachteil haben Verkäufer, wenn ich kritisch denke?

Welchen Vorteil habe ich, wenn ich unkritisch denke?
Welchen Vorteil haben Verkäufer, wenn ich unkritisch denke?
Welchen Nachteil habe ich, wenn ich unkritisch denke?
Welchen Nachteil haben Verkäufer, wenn ich unkritisch denke?

Welchen Vorteil habe ich, wenn Verkäufer kritisch denken?
Welchen Vorteil haben Verkäufer, wenn sie kritisch denken?
Welchen Nachteil habe ich, wenn Verkäufer kritisch denken?
Welchen Nachteil haben Verkäufer, wenn sie kritisch denken?

Welchen Vorteil habe ich, wenn Verkäufer unkritisch denken?
Welchen Vorteil haben Verkäufer, wenn sie unkritisch denken?
Welchen Nachteil habe ich, wenn Verkäufer unkritisch denken?
Welchen Nachteil haben Verkäufer, wenn sie unkritisch denken?

Auf der einfachsten Ebene hat kritisches Denken Vorteile und Nachteile. Je nach dem für wen.

Wir erkennen schon, wenn ich unkritisch denke, kann jemand anderer Vorteile haben. Nachteile habe ich selbst im besten Fall keine.

Wir möchten daher kritisch denken.

Weitere Ideen, Aspekte, Ergänzungen? Bitte in die Kommentare.

Grundlagen der Mathematik

Grundlagen der Mathematik

Machen Sie mit. Die Grundlagen der Mathematik. Smartphonetauglich. Sprachfördernd. Kompetenzerweiternd. Hier geht’s zur Übersicht aller Kapitel.

Gemeinsam lernen wir Mathematik.

M01 – Wörter der Grundrechenarten. Verwenden Sie die mathematischen Begriffe. Wenn Sie die richtigen Begriffe verwenden, kann Sie jeder verstehen.

M02 – Im Kopf rechnen. Lernen Sie das “Einmaleins” auswendig. Wer es kann, hält sich den Kopf frei. Dadurch ist Platz für wichtige Gedanken.

M03 – Die Grundrechenarten. Sie rechnen mit + – • : und beherrschen alle Vorrangregeln. So ist garantiert, dass Sie beim Rechnen sicher am Ziel ankommen.

M04 – Die ZahlenartenSie können unterschiedliche Zahlenarten in Gruppen ordnen. Wer die Zahlen unterscheiden kann, macht sie zu Freunden.

M05 – Primzahlen. Wer Primzahlen kennt, kann natürliche Zahlen in ihre “Bestandteile” zerlegen.

M06 – Zahlensysteme. Sie analysieren mit uns das “Dekadische Zahlensystem”. So erkennen Sie den inneren Aufbau unserer Zahlenwelt.

M07 – Was Prozent % bedeutet. Wer dieses Zeichen kennt, kann Zahlen vergleichen. Dadurch können Sie ihre Beziehungen zueinander erkennen.

M08 – Rechnen mit Prozenten %. Sie können mit %-Anteilen rechnen und knacken jede Nuss mit diesem Zeichen. Das ist eine der wichtigsten Grundlagen des Rechnens.

M09 – Diagramme mit Prozenten %. Sie lernen Sie können Diagramme mit %-Anteilen zeichnen. So sind Zahlen auch gut für die Augen darstellbar.

Zwei rechtwinkelige Dreiecke bilden die Tragflächen dieses Flugdrachens.

M10 – Bruchrechnen. Wenn Sie die Grundrechenarten auch mit Bruchzahlen können, haben Sie viel erreicht.

M11 – Schlussrechnen. Viele Rechnungen des Alltags lösen wir auf diese Art.

M12 – Algebra: Rechnen mit Buchstaben. Sie werden die Grundrechenarten auch mit Variablen durchführen.

M13 – Gleichungen lösen. Einige handwerkliche Methoden lernen Sie in dieser Einheit kennen. Damit lösen Sie lineare – einfache – Gleichungen.

M14 – Textgleichungen lösen. Sie können die Lösung einer Textgleichung angeben. Dazu lernen Sie drei Schritte kennen, damit das immer gelingt.

M15 – Geometrie Grundbegriffe. Sie unterscheiden richtig Punkte, Strecke, Strahl, Gerade.

M16 – Koordinatensystem. Sie lernen das kartesische Koordinatensystem kennen.

Wie lange braucht das Schiff über das Meer?

M17 – Dreiecke und Vierecke. Sie zeichnen Drei- und Vierecke und benennen ihre Elemente.

M18 – Umfang und Fläche. Sie ermitteln Umfänge und Flächen mit Hilfe der Formelsammlung.

M19 – Diagramme und Informationen. Aktiv und passiv. Sie schreiben Informationen in Diagramme hinein, und lesen sie heraus.

M20 – Fehler machen. Vom Scheitern und Probleme lösen: Sie können erklären, warum Fehler zur Mathematik gehören.


 
Dieser Kurs orientiert sich am Österreichischen Lehrplan für Mathematik im 1. Semester an Abendgymnasien. Er ist geeignet, den Stoff zu wiederholen, wie er zum Beispiel am Abendgymnasium Wien in Mathematik des 1. Semesters unterrichtet wird. Obwohl wir äußerst sorgfältig an der Erstellung arbeiten, können wir keine Verantwortung auf Vollständigkeit und Richtigkeit übernehmen. Wenn Sie Fehler entdecken, würden wir uns über eine Meldung an fehler@phyx.at freuen – und mit uns auch alle Teilnehmer/innen an diesem Online Kurs.

Problemelösen

Problemelösen

Michael Müller: Ideenfindung, Problemlösen, Innovation. Publicis Verlag Erlangen, 2011

… haben gleich einmal etwas mit dem Erkennen des Systems zu tun. Michael Müller hat im Publicis-Verlag ein hübsches Buch dazu geschrieben: “Ideenfindung, Problemlösen, Innvoation”. Einige Punkte daraus möchten wir hier vorstellen, weil sie sich ausgezeichnet dazu eignen, auch in der Schule verwendet zu werden.

Um für ein Problem eine Lösung zu finden, müssen wir zuenächst das System beschreiben und erkennen. Dazu sind unter anderem Freihandskizzen eine gute Idee, aber grundsätzlich gibt es vier Methoden, ein System zu erklären:

  1. Die historische Methode. Wie hat sich das alles im Laufe der Geschichte entwickelt.
  2. Die pragmatische Methode. Wie gehe ich selbst – privat – damit um.
  3. Der pädagogische Ansatz. Den Kern deutlich machen.
  4. Die funktionale Methode. Was ist die angestrebte Funktion, die sichtbaren Strukturen sind da Mittel zum Zweck. Diese Methode ignoriert die historische Entwicklung, meint Michael Müller.

Ohne Herz geht es dabei nicht, man muss erst seine Liebe zum Problem erkennen, um es zu lösen.

Lang andauernde Experimente

Lang andauernde Experimente

Pech ist fest, brüchig, aber zugleich langsam fließend: 1927 gab Thomas Parnell an der Universität Queensland etwas Pech in einen Glastrichter. Das Experiment bestand darin zu warten: Alle neun Jahre kam ein Tröpfchen aus dem Trichter heraus. Das Experiment läuft heute noch. Zwar kein Experiment, aber ein Orgelwerk von John Cage, das 639 Jahre dauert: ORGAN2/ASLSP. Es ist derzeit im deutschen Kloster St. Burchadi zu Halberstadt zu hören. Seit dem 5. Februar 2003 erklingt der erste Akkord: ein gis‘, ein gis‘‘ und ein h‘, am 5. Juli 2004 kamen ein e und ein e‘ dazu. Am 5. Juli 2005 um 16.33 Uhr haben sich das gis‘ und das h‘ für lange Zeit verabschiedet. Der letzte Klangwechsel war am 5. Oktober 2013, der nächste kommt am 5. September 2020. Das Werk endet im Jahr 2642.

Alles das gleiche?

Alles das gleiche?

Leistung, Energie, die Kraft und Arbeit. Alles das gleiche?

No way. Wir unterscheiden ganz genau. Am besten an einem Beispiel. Drei Bücher liegen am Boden. Sie gehören zurück ins Regal.

Um die Bücher zu heben, brauchen wir Kraft. „Yeah“. Das spüren wir in den Muskeln. Die Kraft beschleunigt die Bücher, damit wir sie hochheben können, gegen die Schwerkraft. Die Kombination aus Kraft und Weg bezeichnen wir als „Ächz“. Und das ist Arbeit. Diese Arbeit steckt dann auch wirklich in den Büchern, wenn sie im Regal stehen. Sie ist nicht verloren und heißt dann ganz einfach Energie. Sie wird frei, wenn die Bücher wieder zu Boden fallen. „Au“.

Das war’s?

Fast. Wenn zusätzlich die Zeit eine Rolle spielt, in der wir die Bücher heben, dann heißt das Leistung. Je schneller wir diese Arbeit schaffen, desto größer ist die Leistung. Und das heißt: „Wow“. Leistung ist Energieumsatz pro Zeit.